FANDOM


阿克曼數(英語:Ackermann number)定義了一個數列,使用上箭號表示法表示即為[1]

\[A(n) = n\underbrace{\uparrow\uparrow...\uparrow\uparrow}_nn\]

其中\(n\)是正整數。最初的幾個阿克曼數為\(1\uparrow 1 = 1\),\(2\uparrow\uparrow 2 = 4\),和\(3\uparrow\uparrow\uparrow 3 =\) 特利特利。一般情況下,阿克曼數相當於上箭號表示法的對角化,增長率在快速增長層級為\(f_\omega(n)\),慢速增長層級為\(g_{\varphi(n-1,0)}(n)\)。

第\(n\)項阿克曼數在BEAF中也可寫成\(3\&n\)或\(\lbrace n,n,n \rbrace\)。

阿克曼數和阿克曼函數的增長速度相同,但定義方式完全不同。

最後10位數字 编辑

下面列出了前十個阿克曼數的最後十位數字。

  • 1st = 1
  • 2nd = 4
  • 3rd = ...2464195387 (特利特利)
  • 4th = ...0411728896 (特利德特)
  • 5th = ...8408203125 (tripent)
  • 6th = ...7447238656 (trihex)
  • 7th = ...1565172343 (trisept)
  • 8th = ...6895225856 (trioct)
  • 9th = ...7392745289 (triennet)
  • 10th = ...0000000000 (tridecal)

其他符號之近似 编辑

符號 近似值
超E符號 \(En\#\#n\)
BEAF \(\lbrace n,2,1,2 \rbrace\)
快速增長層級 \(f_\omega(n)\)
慢速增長層級 \(g_{\varphi(\omega,0)}(n)\)

來源 编辑

  1. Ackermann Number

參見 编辑

您使用了广告屏蔽软件!


Wikia通过广告运营为用户提供免费的服务。我们对用户通过嵌入广告屏蔽软件访问网站进行了使用调整。

如果您使用了广告屏蔽软件,将无法使用我们的服务。请您移除广告屏蔽软件,以确保页面正常加载。